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Abstract: We introduce an adaptive method for analysis of sparse signals using bandpass filters obtained by mod-
ulated Slepian sequences. Similar to the recently introduced empirical wavelet transform, the proposed method
decomposes a signal into different modes which corresponds to segmenting the Fourier spectrum and filtering the
existing support. The simulations illustrate the correct signal decomposition for a multiband signal which has a
sparse spectrum. The proposed method can be used as an alternative to empirical wavelet transform.
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1 Introduction
Methods that analyze signals in an adaptive manner
have important applications such as decomposition,
denoising, compression, etc. Adaptive methods aim
to construct a basis dependent on the information con-
tained in the signal. Empirical Mode Decomposition
(EMD) has gained a lot of interest as an adaptive rep-
resentation method [1]. EMD detects the principal
“modes” to represent the signal such that each mode
has a compactly supported Fourier spectrum. How-
ever, EMD approach is more of an algorithmic ap-
proach and lacks of a mathematical theory.

On the other hand, wavelet based analysis tech-
niques can be viewed as the application of a filter
bank where each filter corresponds to a scale. An
adaptive representation called Malvar-Wilson wavelet
is based on segmenting a signal in the temporal do-
main where the time intervals contain the different
spectral information [2]. However, it turns out that
temporal segmentation is difficult to implement ef-
ficiently. In [3], the authors use the idea in [2] to
built an adaptive filter bank directly in the Fourier
domain. However, the reconstruction is quite com-
plicated and based on prescribed subdivisions. “Syn-
chrosqueezed” wavelets method combines a classical
wavelet analysis and time-frequency information for
the location detection to obtain more accurate mode
extraction [4]. Based on wavelet transform, Empiri-
cal Wavelet Transform (EWT) is another recently de-
veloped adaptive method [5]. EWT builds adaptive
wavelets to extract amplitude modulated-frequency
modulated (AM-FM) components based on the idea
that AM-FM components have a compact Fourier

spectrum. EWT method adapts the wavelet transform
approach for signal decomposition by considering the
distinct Fourier supports and then building a set of
functions which form an orthonormal basis. The em-
pirical wavelets are defined as bandpass filters on each
Fourier support. In this paper, we take the Fourier
point of view to develop an analysis method for sparse
signals whose Fourier transform is concentrated on a
small number of continuous bands, i.e., multiband sig-
nals. Indeed, any signal with a Fourier transform sup-
ported on a finite range of frequencies cannot also be
supported on a finite range of time. We will show that
it is possible to decompose a multiband signal into its
bandlimited modes of finite-length samples. Similar
to EWT, our approach is based on building a set of
bandpass filters using discrete prolate spheroidal se-
quences [6]. Use of DPSS as an orthogonal basis can
reduce the sampling rate and reconstruction error [7].
The representation of bandpass signals, as the modu-
lation of baseband components, can be obtained using
modulated Slepian basis. The method is illustrated in
analysis of a multiband signal of which coefficients
are complex Gaussian random variables. We compare
the EWT method to the proposed method for a multi
band signal and see that the proposed method can be
used as an alternative to EWT.

1.1 Discrete Prolate Spheroidal Sequences

In this section, first we provide a brief overview of the
discrete prolate spheroidal sequences (DPSSs) also
known as Slepian sequences. DPSSs resulted from
the work by Slepian, Landau, and Pollack on the ef-
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fects of timelimiting and bandlimiting operations [6].
Consider first timelimiting and then bandlimiting a
sequence, the DPSSs are defined to be the eigen-
vectors of this two step procedure. Given N and
0 < W < 1/2, the DPSSs are a collection of N real
valued, strictly bandlimited |f | ≤W discrete time se-
quences

SN,W =
[
s
(1)
N,W , s

(2)
N,W , · · · , s

(N)
N,W

]
with their corresponding eigenvalues

1 > λ
(1)
N,W > λ

(2)
N,W · · ·λ

(N)
N,W > 0.

Let τN denote an operator that takes an infinite length
discrete time signal and zeros out all entries outside
the index range {0, 1, · · · , N − 1} but still the result-
ing signal is infinite length.
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Figure 1: First 4 discrete prolate spheroidal sequences
(DPSSs) for N = 512 and NW = 2.5.

Define a bandlimit operator BW that takes a dis-
crete signal and bandlimits its Discrete Time Fourier
Transform (DTFT) to the frequency range |f | ≤ W
and returns the corresponding signal in time domain.
The DPSSs satisfy BW (τN (s

(`)
N,W )) = λ

(`)
N,W s

(`)
N,W ,

for all ` ∈ {1, 2, · · · , N}. The first 2NW eigenval-
ues are very close to 1 and the rest tend to be close to 0
which is a very distinct behaviour. For a given integer
K ≤ N , we can get N × K matrix formed by tak-
ing the first K columns of SN,W . When K = 2NW ,
it is a highly efficient basis that captures most of the
signal energy. In numerical computations each of the
DPSSs has infinite support in time but if we time-
limit the DPSSs we can obtain finite length DPSSs
which are approximately bandlimited to the digital
frequency range |f | ≤ W . Any DPSS is bandlim-
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Figure 2: Eigenvalues of the DPSSs as shown in Fig-
ure 1.

ited but once timelimited they will not be strictly ban-
dlimited but only be concentrated in the bandwidth
of interest for the first 2NW DPSS. The timelimited
DPSSs are orthogonal;

〈τN (s
(`)
N,W ), τN (s

(`′)
N,W )〉 = 0 for ` 6= `′.

Timelimited infinite length DPSSs can be restricted to
the index range {n = 1, 2 · · · , N} which are DPSS
vectors and defined as

s
(`)
N,W [n] := τN (s

(`)
N,W )[n], ∀`, n ∈ {1, 2, · · · , N}.

These vectors form an orthonormal basis for <N and
using just≈ 2NW DPSS vectors, the energy of a sig-
nal can be captured effectively.

The bandlimiting operatorBW can be constructed
as an N × N matrix with entries BN,W [m,n] :=
2W sinc(2W (m−n)) of which eigenvectors are DPSS
vectors. We can obtain the eigendecomposition of
BN,W as

BN,W = SN,WΛN,WS
H
N,W

where N × N matrix SN,W :=

[s
(1)
N,W s

(2
N,W · · · s(N)

N,W ] ∈ <N×N results from
concatenating DPSS vectors into an N × N matrix
and ΛN,W denote an N × N diagonal matrix with
the DPSS eigenvalues along the main diagonal. Since
the first 2NW eigenvalues of DPSS vectors cluster
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Figure 3: Original components of the signal.

around 1 and the rest around 0 (see. Fig. 1 and Fig.
2), we can obtain efficient bases using small number
of DPSS vectors.

From a filter design point of view, the Slepian
sequences can be viewed as the coefficients of a set
of finite impulse response (FIR) filters which are de-
signed to satisfy some optimality conditions. The de-
signed filters are lowpass filters whose main lobes are
within a five range and have minimum stop band en-
ergy. Moreover, the designed filters are selected so
that their coefficients form a set of orthogonal vectors.

1.2 Multiband Signals

We are interested in the signals of which Fourier spec-
trum can be segmented into intervals. Let us con-
sider a model based on defining a set of frequen-
cies for a continuous time signal x(t), from −BNyq

2

to BNyq

2 into bands of width Bband where the support
of the ith band would be defined as ∆i = [

−BNyq

2 +

iBband,
BNyq

2 + (i + 1)Bband. The above setting is for
the infinite length x(t) as any signal with a Fourier
transform supported on a finite range of frequencies
cannot also be supported on a finite range of time. In
the discrete domain, where we have a finite set of sam-
ples due to Nyquist sampling rate, we focus on repre-
senting sampled multiband signals.
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Figure 4: Fourier Transform of signal (solid line) vs.
Fourier transform of squared gain function of Slepian
bases (dash line) for the signal components.

1.3 Bandpass Modulated DPSS

As an efficient basis of signal representation, we de-
scribe modulated DPSSs as the basis for decomposi-
tion of multiband signals. In our previous work [7],
we showed how to represent sampled low pass and
band pass signals by means of modulated Slepian pro-
jection. Assume that x = [x(0), x(Ts), ..., x(N −
1)Ts] is a vector of N samples of x(t) where Ts is
the sampling period. Let SN,W denote the N × N
DPSS matrix (baseband DPSS basis used to capture
each band). Modulated DPSSs are obtained by taking
the first K columns of the matrix [EfcSN,W ] where
K = 2NW and Efc is the diagonal matrix with en-
tries ej2πfcm where fc = FcTs and Fc is the center
frequency as a results modulated DPSSs, which we
will represent by SM from now on.

1.4 Decomposition of Multiband Signals

Decomposition of a multi band signal using Slepian
sequences will require projection of the sampled sig-
nal x onto the modulated Slepian matrix [EfcSN,W ]
(complete basis for identified space) which provides
projection coefficients. In this paper we assume
that the locations of the K center frequencies Fc
are known a priori using energy calculations in the
Fourier domain and applying some threshold to detect
the locations corresponding to maximum energy val-
ues. These center frequencies are then used to design
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Figure 5: First 3 components of the 6 components ob-
tained by EWT method.

Slepian bandpass filters which are modulated Slepian
matrices at the frequency location Fc to extract each
component.

The coefficient vector c of the projection is given
as

c = SMxT

where SM represents conjugate transpose of SM and
xT is the transpose of x. Once we have the infor-
mation of Fc, we can obtain each basis which is a
modulated Slepian matrix SMi at that particular cen-
ter frequency. The components xi of the multi band
signal then can be found as

xi = SMic

where i = 1, · · · ,K.

2 Experimental Results
In our performance analysis experiment, we com-
pare the proposed method to EWT which builds adap-
tive wavelet bases to decompose signals into compo-
nents. We want to analyze a complex signal composed
of three exponential components each with Gaussian
random variables as coefficients. Figure 3 shows the
components that the signal is composed of. Fig. 5 is
the result of decomposition using EWT method show-
ing first 3 components. Although signal has 3 distinct
bands the EWT method extracts 6 components. The
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Figure 6: Last 3 components of the 6 components ob-
tained by EWT method.

rest of the components are shown in Fig. 6. Using
the modulated Slepian bases, we obtain 3 components
that correspond to the actual components in the signal
as shown in Fig. 7. The original signal is compared to
the signals obtained by adding the components shown
in the Figures [5-7]. The results of the reconstructions
are shown in Fig. 8 and Fig. 9. As the figures illus-
trates, the performance of modulated DPSS basis is
very similar to EWT. However, EWT extracted more
components than the actual signal had which created
components that did not exist in the original signal.

3 Conclusions
In this paper, we proposed to use modulated Slepian
sequences as an efficient basis of signal representa-
tion for decomposition of a sparse signal modeled as
a multiband signal. Similar to EWT method, the pro-
posed method can be viewed as filterbank method. In
simulations, we kept the bandwidth of each compo-
nent equal to each other so our bases had the same
bandwidth for each component. It is possible to extent
the method to signals with components having differ-
ent bandwidths.
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Figure 8: original signal compared (a) to the recon-
structed signal (b) by addition of components obtained
by proposed method and reconstruction error (c).
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Figure 9: original signal compared (a) to recon-
structed signal (b) by addition of components obtained
by EWT method and reconstruction error (c).
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